Methoden der CO₂-Messung

Dr. Marcel Strätz, GKS

Dr. Ragnar Warnecke, GKS

29. Dreiländertreffen Bad Ischl, 12. - 13.10.2025

Agenda

- 1. Emissionshandel und GKS
- 2. Methoden der CO₂-Ermittlung
- 3. Einsatz der kontinuierlichen CO₂-Messung am GKS
- 4. Bestimmung des biogenen CO₂-Anteils
- 5. Zusammenfassung

1. Emissionshandel und GKS

Emissionshandel

- Emissionshandel als Kernelement der Klimapolitik
- Einführung durch Klimaschutzabkommens von Kyoto (1997)
- Gründung Deutsche Emissionshandelsstelle (DEHSt) 2004
- Pariser UN-Klimaschutzabkommen 2015 → Erderwärmung < 2 °C</p>
- → "Green Deal" → EU erster klimaneutraler Kontinent → 2050 Treibhausgasneutral.
- Kontinuierliche Weiterentwicklungen im Emissionshandel
- Ansatz des Emissionshandels:
 - "Begrenzen und Handeln" (Cap and Trade) → Reduktion auf marktwirtschaftlicher Basis
 - Impulse klimaschonendes Verhalten & Investitionen grüne Technologien
 - Einnahmen für CO₂-Zertifikate für Klima- und Transformationsfond
- Treibhausgas-Emissionshandelsgesetz (TEHG) & Brennstoff-Emissionshandelsgesetz (BEHG)

GKS-Gemeinschaftskraftwerk Schweinfurt GmbH

Anlagen: (Inbetriebnahme 1990 & 1994)

➤ Energieteil: 2 Linien á 63 MW BWL → Steinkohle & Trockenklärschlammverbrennung

➤ Müllteil: 3 Linien á 21 MW BWL → Hausmüllverbrennung

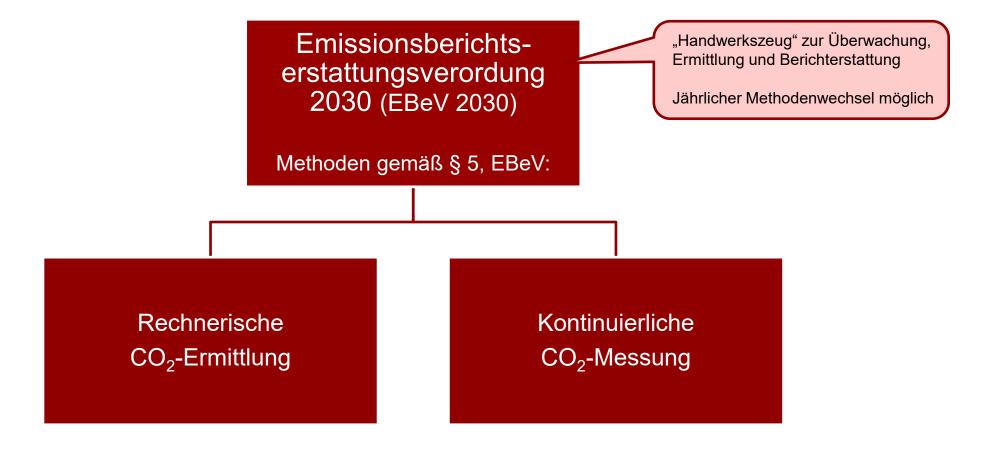
Aufgaben:

- Bereitstellung von Fernwärme für 4 Gesellschafter
- Entsorgung der Abfälle für 9 kommunale Gesellschafter

Daten:

- Kohleeinsatzmengen: ~ 30.000 t/a
- Ø Betriebsstunden Energieteil: ~ 3.500 h/a
- ➤ Mülldurchsatz: ~ 190.000 t/a
- Ø Betriebsstunden Müllteil: ~ 8.200 h/a
- Fernwärmeabgabe: ~ 320 GWh/a
- Stromeinspeisung: ~ 100 GWh/a

Gesetzliche Grundlagen (Deutschland) - GKS


- GKS ist eine nach BlmSchG genehmigte Anlage (17. BlmSchV)
- GKS-Energieteil
 - Seit 2005 im Treibhausgas-Emissionshandelsgesetz (TEHG = EU-ETS 1)
 - ➤ Kauf von TEHG-CO₂-Zertifikaten über EEX, volatile Preise
 - ~ 75.000 t_{CO2}/a (fossiles CO₂); ~ 5,5 Mio. €/a
- GKS-Müllteil
 - Seit 2024 mit Abfall im Brennstoff-Emissionshandelsgesetz (BEHG = nEHS)
 - ➤ Kauf von BEHG-CO₂-Zertifikaten über EEX, fixe Preise
 - Festpreisphase für CO₂-Zertifikate bis 2025 (2021: 25 € 2024: 55 €, 2026: 55 65 €)
 - ~ 75.000 t_{CO2}/a (fossiles CO₂); ~ 3,5 Mio. €/a (2024)

2. Methoden der CO₂-Ermittlung

Methoden der CO₂-Ermittlung

Rechnerische CO₂-Ermittlung

"Brennstoffmenge x Berechnungsfaktoren"

Brennstoffmenge

- Durchsatzmenge → differenziert nach AVV-Nr. ("Sorten")
- Berücksichtigung von Lagerbestandsänderungen

Berechnungsfaktoren

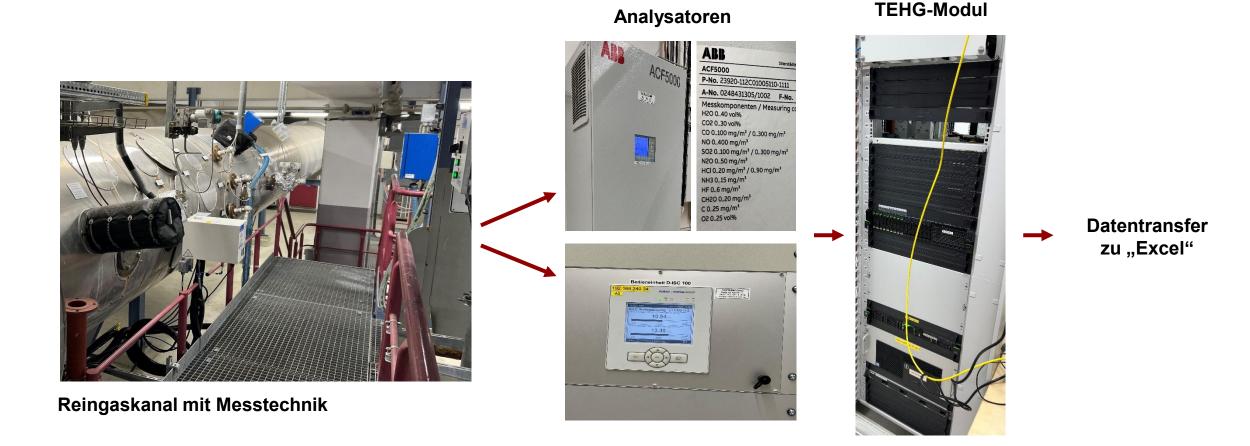
- Veröffentlichte Literaturwerte* / Individuelle Festwerte (jährlicher Kontrollanalyse)*
- Analyseergebnisse nach den Regeln der Technik*
- Standardfaktoren aus EBeV 2030 (z. B. Abfall: Anlage 2 Teil 5)

Biogene Anteile - Berechnungsmethoden

- Standardfaktoren (z. B. EBeV2030)
- Genehmigte Analysewerte

Kontinuierliche CO₂-Messung (KEMS)

"Messung CO₂-Konzentration & Abgasvolumenstrom" (§ 12 EBeV 2030)


- **Emissionsrechner** (CO₂-Konzentration & Abgasvolumenstrom)
 - Geprüfte & kalibrierte Messeinrichtungen
 - Alle Betriebszustände, in denen CO₂ freigesetzt wird
 - Gesamt-Jahres-Brennstoffemission mit eignungsgeprüfter Datenerfassung
- > Biogene Anteile Bestimmungsmethoden
 - ¹⁴C-Methode (Radiocarbonmethode) auf Grundlage der EN ISO 13833
 - Mengengewichtete Biomasseanteile der Abfallgruppen gemäß Anlage 2 Teil 5 (EBeV 2030)
 - Bilanzierungsmethode auf Grundlage der ISO 18466

3. Einsatz der kontinuierlichen CO₂-Messung am GKS

GKS - Messtechnik für kontinuierliche Bestimmung



EMI-Rechner &

GKS - Datenaufbereitung

Bsp.: "Ereignisse" an L13 → "manuelle" Datenaufbereitung nötig (Umbau, Kalibrierungen etc.)

GKS - Datenzusammenstellung

- Betriebsdaten (2024)
 - Abfalldurchsatz & Einsatz Heizölmenge
 - Mengen an Müllschlacke-, Flugasche- und RGR-Salze
 - Dampfproduktion, Dampfdruck- und –temperatur
 - Externe Analyseergebnisse (Reststoffe)
- CO₂-Emissionsdaten (2024) (in Excel)
 - Daten aus EMI-Rechner & TEHG-Modul (O₂, CO₂, V)
 - Manuelle Datenaufbereitung & Prüfung Ersatzwerte
 - Gesamte CO₂-Menge (Abfall) ~ 183.500 t/a (L11 ~ 69.300 t/a / L12 ~ 55.700 t/a / L13 ~ 58.500 t/a)

Ermittlung des biogenen & fossilen CO₂-Anteils?!

Wenn die Messwerte vorliegen, können sämtliche Bestimmungsmethoden angewendet werden!

4. Bestimmung des biogenen CO₂-Anteils

Bestimmungsmethoden

- 1. Bilanzierungsmethode
- 2. ¹⁴C-Methode
- 3. AVV-Standardfaktoren-Methode

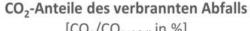
Bilanzierungsmethode (ISO 18466)

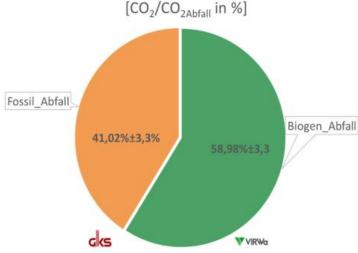
- ➤ Unsicherheit der CO₂-Frachten
 - Messunsicherheiten (T, P, V, CO₂, ...)
 - Unsicherheit bei Bilanz-Methode

- Ermittelte Messunsicherheiten (Fehlerfortplanzungen)
 - für Gesamt-CO₂-Fracht = 6,2 %
 - für Biogener C-Anteil = 3,3 %

Kennwert	Wert	Einheit	Relative Standard- abweichung	Quelle	
Kesselwirkungsgrad ⁷	0,84	[-]	± 1,5 %	Betreiberangabe kontrolliert durch eigene Berechnung	
Anfallende Menge an Schlacke	0,277	[t FS/t Abfall]	± 3 %		
Anfallende Menge an Flugasche + RGR-Salzen (bei den RGR-Salzen wird berücksichtigt, dass diese etwa 30% an eingebrachten RGR Mittel enthalten)	0,0233	[t FS/t Abfall]	± 3 %	berechnet anhand übermittelter Gesamtmengen bzw. Analysen	
Mittlerer Wassergehalt der Schlacke	0,152	[kg H ₂ O/kg FS]	± 5 %		
Mittlerer Wassergehalt der Asche + RGR-Salze	0,00	[kg H ₂ O/kg FS]	± 1 %		
Abfallinput ⁸		[kg / h]	± 3 %	Leittechnik	
Heizölmenge ⁷ (angenommene Dichte von 0,84 kg/Liter)		[Liter/h]	± 2 %	Leittechnik	
Reingasvolumenstrom	ingasvolumenstrom		± 3,0 %	TEHG	
2-Konzentration Reingas		[Vol-% tr.]	± 1,0 %	EWR	
CO ₂ -Konzentration Reingas		[Vol-% tr.]	± 1,0 %	TEHG	
Dampfmenge		[Tonnen/h]	± 1,5 %	Leittechnik	
Druck im Dampfkessel		[bar absolut]	± 1,5 %	Leittechnik	
Temperatur im Dampfkessel		[°C]	± 1,5 %	Leittechnik	
Speisewassertemperatur		[°C]	± 1,5 %	Leittechnik	
EWR Emissionswertrechner					

Quelle: VIRWa, Prof. Johann Fellner




Bilanzierungsmethode (ISO 18466)

Auswertung des biogenen & fossilen CO₂-Anteils durch das Vienna Institut for Ressources and Waste (**VIRWa**) mit Bilanzierungsmethode

- Bsp.: Ergebnisse der Mülllinie L13
 - CO_2 -Fracht Abfall: $\sim 58.500 t_{CO_2}/a$
 - biogener Anteil: ~ 59,00 %
 - fossiles CO_2 : ~ 24.000 t_{CO2}/a
 - biogenes CO₂: ~ 34.500 t_{CO2}/a
- Gesamtemissionen Müllinie L11 L 13 (2024)
 - CO_2 -Fracht Abfall: ~ 183.500 t_{CO_2}/a
 - Ø biogener Anteil: ~ 59 %
 - fossiles CO_2 : ~ 75.600 t_{CO2}/a
 - biogenes CO₂: ~ 107.800 t_{CO2}/a

Ergebnisse Mülllinie L13

Quelle: Vienna Institute for Resources and Waste (VIRWa), Prof. Johann Fellner

14C-Methode (EN ISO 13833)

Parallel GKS-Interne Auswertung mit ¹⁴C-Methode

- Mobiles ¹⁴C-Probeentnahmegerät
- Kontinuierliche Rauchgasentnahme und Absorption in Kartusche
- Messzeitraum: ~ 30 Tage & anschließende Laboranalyse
- 14C-Gehalt entspricht biogenem Kohlenstoff
- Messzeitraum GKS: 11.2023 03.2025



Mülllinie	Biogener CO ₂ Anteil [%]				
L11	54%				
L11	57%				
L11	54%				
L13	55%				
L13	62%				
L13	55%				
L13	55%				
L12	52%				
Durchschnitt	56%				

AVV-Standardfaktoren-Methode

- Jahres-Mülldurchsatz
 - Aufgeteilt nach AVV-Nummern

- Berechnung der CO₂-Emissionen (biogen und fossil) mit Daten gemäß Anlage 2 Teil 5 (EBeV 2030)
- Berechnungsergebnisse GKS:
 - CO₂-Gesamt: ~ 168.000 t_{CO2}/a
 - fossiler CO₂-Anteil: 48 %
 - biogener CO₂-Anteil: ~ 52 %
 - 2024: 45 €/tCO₂ → ~ 3,5 Mio. €/a

Teil 5 Standardwerte zur Berechnung von Brennstoffemissionen in den Fällen des § 2 Absatz 2a BEHG

Nummer	Abfallschlüss gemäß Abfall verzeichnis- Verordnung		Biomasse- anteil	Um- rechnungs- faktor	Heizwert der Original- substanz	Heizwertbezogener Emissionsfaktor
1	Leichtverpackungen- Sortierreste	15 01 05	32,0 %	1 t/t	18,1 GJ/t	0,0839 t CO ₂ /GJ
2	Gewerbeabfall	15 01 06 15 02 02 17 09 03 17 09 04 18 01 04 19 12 08 20 01 32	48,9 %	1 t/t	13,3 GJ/t	0,0888 t CO ₂ /GJ
3	Sortierreste aus der mechanisch-biologischen Abfallbehandlung	19 12 10 19 12 12	50,0 %	1 t/t	10,0 GJ/t	0,0949 t CO ₂ /GJ
4	Restabfall	02 02 03 02 03 04 15 01 01 19 05 99 19 08 01 20 01 08 20 02 01 20 03 01 20 03 02 20 03 03 20 03 02 20 03 03 20 03 09 9	53,5 %	1 t/t	8,8 GJ/t	0,0982 t CO ₂ /GJ
5	Sperrmüll	20 03 07	60,3 %	1 t/t	16,0 GJ/t	0,0857 t CO ₂ /GJ
6	Altholz					
6a	Altholz Al und All	03 01 05 17 02 01	95,0 %	1 t/t	15 GJ/t	0,0867 t CO ₂ /GJ
6b	Althoiz Alli, AIV, PCB	15 01 03 19 12 07 20 01 38	90,0 %	1 t/t	15 GJ/t	0,0867 t CO ₂ /GJ
7	Klärschlamm					
7a	Kommunaler Klärschlamm	19 08 05	100,0 %	1 t/t	***	***
7b	Industrieller Klärschlamm	19 08 11 19 08 12 19 08 13 19 08 14	30,0 %	1 t/t	***	***
8	alle übrigen Abfälle	alle übrigen Abfallschlüssel	0,0 %	1 t/t	10,0 GJ/t	0,0949 t CO ₂ /GJ

Vergleich der Methoden (Bestimmung biogener & fossiler CO2-Anteil)

▶ ¹⁴C-Methode

- Messgerät ~ 40.000 €; ¹⁴C-Analyse ~ 1.000 €/Analyse
- 12 Analysen/a ~ 12.000 €/a; Wartung/Service ~ 10.000 €/a; Personalkosten ~ 3.000 €/a
- GKS-Auswertung: biogener C-Anteil ~ 56 % → "mittlerer" biogener Anteil → fossiler C-Anteil ~ 44 %
- Probleme mit Messgerät & Technik (Korrosion, Verschmutzung, Temperaturen, etc.) // Umbau- und Prüfaufwand

AVV-Standardfaktoren-Methode

- Keine Anschaffungskosten, Infrastruktur (Waage, Waagen-Software, etc.) vorhanden
- Korrekte AVV-Nr.-Zuordnung der Anlieferungen nötig
- GKS-Auswertung: biogener C-Anteil ~ 52 % → "geringer" biogener Anteil → fossiler C-Anteil ~ 48 %

Bilanzierungsmethode

- TEHG-Modul ~ 5.000 €; Kalibrierungen ~ 11.000 €/a (für 3 Müllinien)
- Auswertung Bilanzierungsmethode ~ 30.000 €/a (für 3 Müllinien)
- Biogener C-Anteil ~ 59 % → "hoher" biogener Anteil → fossiler C-Anteil ~ 41 %

Einsparpotential bei 180.000 t_{CO2}/a: Δ 7% = 12.600 t_{CO2}/a → 12.600 t_{CO2}/a * 45 €/ t_{CO2} ~ Δ 0,55 Mio. €/a

4. Zusammenfassung

Zusammenfassung

- GKS-Gemeinschaftskraftwerk Schweinfurt mit Energie- und Müllteil
- Energieteil des GKS im TEHG & Müllteil des GKS im BEHG
- Grundlagen für Emissionshandel des Müllteil: BEHG und EBeV 2030
- Rechnerische CO₂-Ermittlung → "Brennstoffmenge x Berechnungsfaktoren"
- ➤ Kontinuierliche CO₂-Messung → "Messung CO₂-Konzentration & Abgasvolumenstrom"
- ➤ Bestimmungsmethoden Biomasseanteil: Bilanzierungsmethode, ¹⁴C-Methode, AVV-Standardwerte
- Untersuchungsergebnisse am GKS
 - ▶ Bilanzierungsmethode → Ø biogener Anteil ~ 59 % & fossiler Anteil ~ 41 %
 - \rightarrow 14C-Methode \rightarrow Ø biogener Anteil \sim 56 % & fossiler Anteil \sim 44 %
 - AVV-Standardwerte → Ø biogener Anteil ~ 52 % & fossiler Anteil ~ 48 %
- Favorisierte Variante nach Anwendung und Wirtschaftlichkeit: Bilanzierungsmethode

Vielen Dank für Ihre Aufmerksamkeit

